PHYSICAL REVIEW E

VOLUME 52, NUMBER 2

AUGUST 1995

Ordering kinetics of two-dimensional O(2) models:
Scaling and temperature dependence

Jong-Rim Lee,>* Sung Jong Lee,>' and Bongsoo Kim?
! Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea
2 Department of Physics, Changwon National University, Changwon, 641-773, Korea
(Received 7 February 1995)

This paper presents simulation results on the phase-ordering kinetics of two-dimensional O(2)
models. Both the time-dependent Ginzburg-Landau (TDGL) model and the fixed length spin XY
model on a square lattice are studied using the Langevin dynamics approach. The equal-time
correlation functions of the TDGL model at zero temperature quench are shown to scale best with
the length scale form of L(t) ~ [t/(Int)?]°®, with v ~ 0.7, which is also consistent with the length
scale derived from the energy-scaling argument, although with a slightly different value of . Critical
dynamic scaling is satisfied for quenches to finite temperatures below Tk (the Kosterlitz-Thouless
transition temperature). Autocorrelation functions show reasonable agreement with the theoretically
predicted behavior of A(t) ~ L(t)~o*+"™] where Ao is the zero temperature exponent for the
autocorrelation and 7n(T') is the temperature-dependent exponent for the equilibrium correlation

function.

PACS number(s): 64.60.Cn, 64.60.Ht, 64.60.My, 82.20.Mj

I. INTRODUCTION

Ordering kinetics of statistical thermodynamic systems
quenched from a disordered phase to an ordered phase
has long been a subject of intensive research [1]. Recent
interest in this area focuses on systems with continuous
global symmetries [2-15]. For these systems, depend-
ing on the dimensionality of the system and the num-
ber of components of the order parameter, various types
of stable topological defects or structures such as vor-
tices, strings, hedgehogs, and textures are possible and
these defects act as disordering agents, greatly influenc-
ing the ordering dynamics of the system [7]. Among these
systems, two-dimensional O(2) models [both the contin-
uum time-dependent Ginzburg-Landau (TDGL) model
and the discrete lattice XY model] have attracted much
attention in recent years [8-15].

In spite of extensive numerical and theoretical efforts,
the domain growth law and scaling properties of this
system at zero temperature quench have not been com-
pletely settled, partly due to the apparent slow approach
to the asymptotic growth law [14,15]. The correlation
functions could be scale collapsed by a time-dependent
length scale, but it did not coincide with the average
length scale derived from the vortex density. Further-
more, most of the previous studies dealt with the case of
zero temperature quenches only. However, for the O(2)
model, the finite temperature quench is particularly in-
teresting for the following reason. In equilibrium, the
model exhibits a type of phase transition known as a
Kosterlitz-Thouless (KT) transition at Tkt due to the
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unbinding of vortex-antivortex pairs [16]. Below Txr,
the system has a quasi ordered phase that is character-
ized by a power law decay of order parameter correlation
function for long distances. The critical exponent gov-
erning the power law decay decreases continuously down
to zero temperature: the system is critical at equilibrium
for all temperatures below Txr. In this sense, all finite
temperature quenches below TkT are critical quenches
and therefore the temperature becomes relevent. Since
the relaxation process here at finite temperature is an
approach to a quasi-long-range order, it might be termed
a “quasiordering process” [17].

In the present work, we investigate the phase-ordering
kinetics of O(2) models in two dimensions for quenches
to both zero and finite temperatures. The main results
of the present work can be summarized as follows.

The order parameter correlation function obeys a crit-
ical dynamic scaling of the form

C(r,t) = r~—T) (—L—’('E) , (1)

where 7(T) is the critical exponent for the equilibrium
correlation function at temperature T and L(t) is the av-
erage size of the ordered (or quasiordered) regions grow-
ing with time. For the case of zero temperature quench,
the possibility of a tentative scaling violation has been
addressed recently [15] based on the length scale derived
from the density of defects (vortices). We show here that,
following the energy scaling approach due to Rutenberg
and Bray [18,19], the scaling hypothesis does in fact hold
only if we use the length scale derived from the relation
between the energy vs the length scale of the domain size.
If we denote this length scale by Lg(t), then we could fit
Lg(t) into the form Lg(t) ~ [t/(Int)7]%® with v ~ 0.75.
We emphasize the discrepancy between this length scale
[Le(t)] and that from the vortex density [Ly(t)] in the
different logarithmic corrections (see Sec. III for more de-

1550 ©1995 The American Physical Society



52 ORDERING KINETICS OF TWO-DIMENSIONAL O(2) . .. 1551

tails). The nonequilibrium exponent [20] associated with
the autocorrelation function for zero temperature quench
is in excellent agreement with the theoretical predictions
made by Bray and Puri [4] and independently by Liu
and Mazenko [5]: A(t) ~ L(t)~*, where Ao ~ 1.17.
For the case of finite temperature quenches, the simu-
lation results are in reasonable agreement with the the-
oretically predicted behavior of A(t) ~ L(t)~*(T), where
AT) = xo +0(T).

This paper is organized as follows. In Sec. II we
describe the Hamiltonian of the model, the associated
Langevin dynamic equation, and the measured quanti-
ties. In Sec. III the results of the numerical simulations
are presented in detail. Section IV summarizes the re-
sults.

II. MODELS

The Ginzburg-Landau Hamiltonian of the O(2) model
is given by

H= /d%[%(v(;)z +1(@2-1)7, (2)

where qg is a two-component real vector field J; = (¢1,¢2)-
The time evolution of the model is assumed to be gov-
erned by the model A dynamics appropriate to the non-
conserved order parameter, of the form

06a _ SH .
ﬁ- = —3‘5; +Ca('r,t)

=V20a + (1 = $)da + Ca(Ft), a=1,2 (3)

where the thermal noise (,(7,t) is white Gaussian with
zero mean and with variance satisfying the detailed bal-
ance at temperature 7T,

(a(T t)Ca (7', ') = 2kpTdapd(F — 7')o(t — t'). (4)

We have also studied the dynamics of the hard spin XY
model on square lattice whose Hamiltonian is given by

H=-7Y 8i-8=-73 cos(t: —0;), (5)
(i3} (i5)
where J is the interaction strength and 6; is the phase
angle of the spin at site i; S; = (cos 0;,sin 6;) and the sum
is over nearest neighbors. The corresponding dynamic
equation we use is of the form

00;  éH . 2
=g TGO, =1 N, (6)
where the thermal noise (;(t) satifies
(GG () = 2kT6:56(t — 1) (7)

Both (6) and (7) are numerically integrated in time us-
ing Euler’s method with the integration time step At =
0.05-0.1 and we use the discrete lattice Laplacian in (3)
with the mesh sizes given by Az = Ay = 1. Periodic
boundary conditions on both lattice directions are em-
ployed. Simulations were carried out on square lattices
of linear size N = 256 for the case of the hard spin XY
model, while for the case of O(2) the TDGL model with

a lattice size of N = 800 was used for zero temperature
quench and N = 400 for finite temperature quenches.
The final results are obtained from averages over 30 dif-
ferent random initial configurations. Main quantities of
interest are expressed in terms of the O(2) TDGL model
as follows: (i) excess energy relaxation (at zero temper-
ature) is defined as

820 = gy (Sl Gn - 8014 161 -17) . @

where () denotes an average over random initial config-
urations, (ii) the equal time correlation function

1 - -
C(rt) = 7 <Z $i(t) -¢i+r(t)> i (9)
(iii) the two-time autocorrelation function

At,t') = % <Z éi(t) - $z'(t')> , (10)

where we only measure correlations with initial configu-
rations, namely, ¢’ = 0,

A(t) = A(t,0) ; (11)

and (iv) the number of vortices at time t is Ny (¢).

It is straightforward to write down the corresponding
quantities in the hard spin XY model on square lattices.
The results of simulations will be presented mainly in
terms of O(2) TDGL model, but when necessary we will
compare the results with those obtained from the hard
spin XY model on square lattices.

III. SIMULATION RESULTS
A. Zero temperature quench

Here we present simulation results on the O(2) TDGL
model for the case of zero temperature quench. The main
objective here is to check whether the scaling assumption
holds in this system and to obtain the domain growth
law. Recently a tentative scaling violation in the two-
dimensional O(2) model has been suggested by Blundell
and Bray [15]. Their suggestion is based on the scaling
relation p(t) ~ L™2(t), where p(t) is the defect number
density. Using this relation, when the equal-time corre-
lation function C(r,t) was scaled with rp!/2(t), the data
collapse failed. We note that there exists another scaling
relation that relates the excess energy density to the do-
main size. We may reexamine the equal-time correlation
functions in terms of the length scale derived from the en-
ergy scaling relation. The excess energy vs time is shown
in Fig. 1. We see that the excess energy continues to de-
cay toward zero and hence there is no sign of freezing in
for the case of the continuous O(2) TDGL model in two
dimensions, in contrast to the case of the hard spin XY
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FIG. 1. Time dependence of the excess energy for the O(2)
TDGL model at zero temperature. The lattice size is 800800
and the results are averages over 30 different random initial
configurations.

model (first observed by Bray and Humayun [11]), where
the excess energy is seen to decay toward some nonzero
value and the ordering does not proceed any further due
to lattice pinning of vortices.

Following Bray and Rutenberg [18], it is easy to prove
that in (2) the excess energy is dominated by the gradient
term and hence

AE(t) ~ </d2r(v$)2> ~ /dsz(k,t)kz . (12)

where S(k,t) is the Fourier transform of the equal-time
correlation function C(r,t). If the scaling hypothesis
holds, namely,

C(r,t) = f(r/L(t)) , (13)

where L(t) is the average size of ordered regions at time
t, then

S(k,t) = L2(£)g(kL(1)). (14)

Putting (14) back into (12), one obtains
AE(t) ~ L2(t) / Pza?g(z) (15)

where the scaling function g(z) behaves like g(z) ~ =%
for £ > 1 due to the presence of vortices; this is known as
the generalized Porod law [4-7,18]. This makes the inte-
gral in (15) logarithmically divergent for large z, yielding

AE(t) ~ L72(t) In[L(t) /€] , (16)

where £ ~ 1 is the size of a vortex core. We can ob-
tain another equation relating the energy dissipation to
L(t) and dL/dt [18]. By combining this relation with
(16), Rutenberg and Bray could derive scaling laws for
the domain growth. However, in the case of O(2) model
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FIG. 2. Time dependence of the length scale Lg(t) ob-
tained from the relation [Eq. (16)] between the energy density
(Fig. 1) and the domain size scale.

in two dimensions, the additional relation becomes de-
generate with (16) and hence the scaling law cannot be
determined in this way. Here we have, from simulations,
the time dependence of the excess energy. Therefore, we
decided to solve (16) directly for L(t) up to an overall fac-
tor, using the excess energy from simulations and then
try to scale the equal-time correlation functions with the
numerically determined solution L(t) = Lg(t) in order to
test whether the scaling hypothesis is really consistent.
Figure 2 shows such a solution with the core size £ = 1.
The rescaled data on equal-time correlation C(r,t) col-
lapse nicely except for the early-time regime (¢ < 20),
which is shown in Fig. 3. Hence we see that the scaling
hypothesis (13) is indeed consistent at least with the re-
lation between the excess energy and the domain size. In
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o
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0.2 |
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FIG. 3. Scaling collapse of the equal-time correlation func-
tions for the O(2) TDGL model at zero temperature using
the length scale Lg(t) as shown in Fig. 2.
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order to extract the growth law for the domain size, we
first tried a pure power law fit, which gave Lg(t) ~ t%44.
Figure 4(a) shows the scaling collapse of the C(r,t) us-
ing the corresponding pure power law for the domain size.
But notice that, even though the power law fit is quite
good in the long-time regime, the fit is not good in the
shorter-time scale. As another form of the growth law,
we attempted a growth law of the form

Lg(t) ~ [t/In()"]"/2. (17)

This form is motivated by the expectation that the true
asymptotic growth law probably would be L(t) ~ t'/2
in the very-long-time regime, but that there would exist
some logarithmic corrections. Plotting Lg(t)/t}/? ver-
sus In(t) in logarithmic scale yields Lg(t) ~ [t/In(t)7]'/?
with v ~ 0.75. Independently of this, we tried to col-
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FIG. 4. Scaling collapse of the order parameter correla-
tion functions for the O(2) TDGL model at zero tempera-
ture using (a) a pure power law form of domain growth with
L(t) = t°** and (b) a diffusive form with logarithmic correc-
tions L(t) = {t/[In(¢)]7}*/? with v = 0.7.

lapse the equal-time correlation functions by the form
(17), which is shown in Fig. 4§b), where we get the best
collapse for L(t) ~ [t/ 1n(¢)"]}/2 with v; ~ 0.7. This is in
reasonable agreement with (slightly less than) the corre-
sponding exponent value from Lg(¢). Note that the scal-
ing collapse with this form with logarithmic correction
is much better than that with the form of a pure power
law, especially in the early-time regime. Therefore, the
growth may be viewed as diffusive with a correction of
nontrivial logarithmic power, even though it is very dif-
ficult numerically (based on simulation results for finite
time window) to differentiate between a pure power law
of, say, L(t) ~ t%** and diffusive growth with logarithmic
corrections.

Going back to the relation between the defect number
density and the length scale, there are two important
ingredients in the derivation of this relation. First, the
scaling assumption (13) and the generalized Porod law
gives

S(k,t) = L*(t)g(kL(t))
~ L2(0)[RL(t)]
~ L72(t)k™* for kL > 1. (18)

Second, the singular part of the equal-time correlation
function is shown to be [19]

Ciing = p(t)r* In[r/L(#)], (19)

which leads to S(k,t) ~ p(t)k—* for kL(t) > 1. This,
compared with (18), yields the scaling relation p(t) ~
L~%(t). We have plotted in Fig. 5(a) the decay of the
number of total defects (both vortices and antivortices)
Ny (t), which is proportional to the defect number den-
sity. Motivated by the possibility of aymptotic growth
of L(t) ~ t'2, one may assume an ansatz form of
Ny (t) ~ In*(t)/t. Plotting Ny (t)t vs In(t) [Fig. 5(b)]
gives p(t) ~ In(t)/t, that is, we have u = 1, as was ar-
gued by Rutenberg and Bray [18].

It is interesting to point out that this form of the time
dependence of the defect density p(t) ~ In(t)/t is also
observed, in various contexts, in the problem of an anni-
hilating random walk [21] and in the relaxation dynam-
ics in the two-dimensional Ising model with local gauge
symmetry [22], where neighboring frustrated plaquettes
annihilate each other. Using the numerically determined
L(t) = Lg(t) from the excess energy relaxation, one can
directly obtain the relation between p(t) and L(t). Fig-
ure 5(c) provides such a plot. For the late-time regime,
measuring the slope yields p(t) ~ L™193(¢). Also shown
is a line with slope —2 for comparison. One can see a
discrepancy between the two, which is the reason for
the apparent failure of the scaling collapse of C(r,t) in
terms of Ly (t). It is not yet clear why the scaling col-
lapse does work with L(t) = Lg(t) but not with Ly (¢).
But we conjecture that the long-range logarithmic in-
teraction between vortices and antivortices might gen-
erate a few length scales with the same asymptotic be-
havior but with different logarithmic corrections. For
example, we may consider the average size of a vortex-
antivortex pair and the average distance between neigh-
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FIG. 5. (a) Time dependence of the total defect (vortex
and antivortex) number for the O(2) TDGL model at zero
temperature. (b) Ny (t)t vs In(t) shows straight line confirm-
ing Nv(t) ~ In(t)/t. (c) The total defect number vs the length
scale Lg(t), where the solid line represents a power law with
slope —2. We can see a discrepancy between the two.

boring vortex-antivortex pairs. Individual vortex and
antivortex within a pair interact logarithmically, while
two neighboring vortex-antivortex pairs will interact ef-
fectively via a dipole-dipole interaction, which is much
weaker than a logarithmic interaction. Therefore, we
may expect that, due to this strong correlation between
the vortex and the antivortex within a pair, the time
dependence of the average size of a vortex-antivortex
pair and that of the average distance between neighbor-
ing vortex-antivortex pairs will possibly have the same
asymptotic behavior but with different logarithmic cor-
rections. This may be the cause of the subtle logarith-
mic correction appearing in the length scale Lg(t). More
detailed simulations and analysis will be necessary to re-
solve this question.

The dependence of the autocorrelation function on
L(t) is determined in a similar fashion as above and is
shown in Fig. 6, where we use L(t) = Lg(t). We ob-
tain from Fig. 6 A(t) ~ L™*°(t) with A\¢ =~ 1.171, which
is in excellent agreement with the result obtained from
Mazenko’s theory and the 1/n-expansion result due to
Newman and Bray [23].

B. Finite temperature quench

In the two-dimensional O(2) model, the system be-
comes critical at all temperatures below Tkxt. At equi-
librium, the correlation function behaves as Ceq(r) ~
r~™T), Therfore one expects that the quasiordering dy-
namics at finite temperature quenches below Tkt will not
be governed by the zero temperature fixed point. Instead,
the zero temperature dynamic scaling for the equal-time
correlation function (13) and (14) will be generalized, in
the case of finite temperature quench, to

C(r,t) = r "D f(r/L(t, T)) (20)

and

T T T T T
A(t) +
I—X.l'? —_
0.1f .

0.01 |-

1 1 L 1 L

10 20 30 40 50
Ly

FIG. 6. Autocorrelation function of the order parameter
plotted in terms of the length scale Lg(t) for the O(2) TDGL
model at zero temperature, which shows excellent agreement
with the theoretical predictions Ao ~ 1.17.
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S(kat) = Lz_n(T)g(kL(taT)) ’ (21)
respectively. In (20) and (21) the exponent n(T') is the
critical exponent for the equilibrium correlation function.
A rough value of Tkt could be determined by dynamic
simulations as the temperature above which the ordering
process does not proceed indefinitely but stops at some fi-
nite length scale. We could get Tkt =~ 0.42. Figures 7(a)
and 7(b) show examples of critical dynamic scaling, in the
case of the O(2) TDGL model, for kgT = 0.2 and 0.4,
where we tried only a power law form of the growth law
for the quasiordered domain L(t,T) ~ t'/*(T), The dy-
namic exponent 1/z(T) for different temperatures ranges
between 0.41 and 0.44 when a power law fit is attempted.
However, for the case of finite temperature quenches, we
could not collapse the equal-time correlation functions
using a growth law of diffusive form with logarithmic
corrections. Also, it is fair to say that the quality of the
scaling collapse at high temperatures is not as good as
those at lower temperatures. We have also checked for
the hard spin XY model on square lattices that the crit-
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ical dynamic scaling of the form (20) holds [see Fig. 7(c)]
and the temperature dependence of the exponent 7(T') is
in good agreement with the theoretical prediction made
by Villain [24]: n(T) = 7/2m + 72 /4n, with 7 = T/J.
For the autocorrelation function at finite temperatures,
Fig. 8 shows the numerical results on its time depen-
dence, for different temperatures. We can see that the
power law slope tends to increase slightly at higher tem-
peratures. Motivated by the case of zero temperature,

we may set
A(t) ~ L")‘(T)(t) ~ T/ 2(T)] (22)

Theoretically, we may understand this behavior using the
scaling assumption of the two-time correlation function.
As a generalization of (21), the two-time correlation func-
tion may be written in the form

S(k,t,t') = <$(E,t) - B(—k, t’)>
= L*7(#)[L(t') /L) h(kL(t), kL(t"),
t>t . (23)
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FIG. 7. Scaling collapse of the order parameter correlation functions for the O(2) TDGL model (400 x 400 lattice) at finite
temperatures with (a) kgT = 0.2, (b) kT = 0.4, and (c) similar scaling collapse of the order parameter correlation functions
for the XY model on a square lattice (256 x 256) at temperature kT = 0.6J. The inset to (c) shows 1/2(T') and n(T') for the
XY model, where solid lines are only guides to the eye. A pure power-law form is used for the domain growth.
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FIG. 8. Time dependence of the autocorrelation function
of the order parameter for the O(2) TDGL model at differ-
ent temperatures, which shows a slight increase in the power
exponents as the temperature increases.

The autocorrelation function is given by
A(t) = / kS (k,t,to) ~ L(t)~ Gt | (24)

yielding A(T) = Ao + n(T). Figure 9 shows the sim-
ulation results of the power exponents «(7) defined
through A(t) ~ t=T) and the derived quantities [Ag +
1(T)]/z(T), where we use Ag = 1.17 and n(T)/2(T) ex-
tracted from the scaling collapse of the equal-time corre-
lation functions. We find reasonable agreement.

IV. SUMMARY

In this work, we presented simulation results and a de-
tailed analysis on the ordering kinetics of the O(2) mod-
els in two dimensions, especially in terms of zero tem-
perature scaling and temperature dependence. At zero
temperature, the length scale derived from energy scaling
argument was shown to give a good collapse of the equal-
time correlation functions, although the length scale from
the defect density does not. The domain growth law can
be fitted into a diffusive form with logarithmic corrections

0.9 T T T T T
o o
0.8 Do +n(T))/2(T) — 4
0.7 | -
0.6 % -
o

0.5 .
04 |
03} .
02 1 1 1 1 1

-0.1 0 0.1 0.2 0.3 0.4 0.5

kT

FIG. 9. Temperature dependence of the autocorrelation ex-
ponents a(T') as defined in the text. Diamonds are the ex-
ponents directly measured from the simulation results and
the solid line represents the theoretical prediction based on
Egs. (22) and (24) in the text and those values of n(T") and
1/z(T) obtained from the scaling collapse of the equal-time
correlation functions of the order parameter.

of nontrivial power. Further study would be necessary to
understand why this is so. In the case of finite temper-
ature quenches, a critical dynamic scaling was satisfied
for the equal-time correlation functions and the autocor-
relation exponents showed a temperature dependence as
predicted from the scaling hypothesis.
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